Voltage sensing in ion channels: mesoscale simulations of biological devices.
نویسندگان
چکیده
Electrical signaling via voltage-gated ion channels depends upon the function of a voltage sensor (VS), identified with the S1-S4 domain in voltage-gated K(+) channels. Here we investigate some energetic aspects of the sliding-helix model of the VS using simulations based on VS charges, linear dielectrics, and whole-body motion. Model electrostatics in voltage-clamped boundary conditions are solved using a boundary element method. The statistical mechanical consequences of the electrostatic configurational energy are computed to gain insight into the sliding-helix mechanism and to predict experimentally measured ensemble properties such as gating charge displaced by an applied voltage. Those consequences and ensemble properties are investigated for two alternate S4 configurations, α and 3(10) helical. Both forms of VS are found to have an inherent electrostatic stability. Maximal charge displacement is limited by geometry, specifically the range of movement where S4 charges and countercharges overlap in the region of weak dielectric. Charge displacement responds more steeply to voltage in the α-helical than in the 3(10)-helical sensor. This difference is due to differences on the order of 0.1 eV in the landscapes of electrostatic energy. As a step toward integrating these VS models into a full-channel model, we include a hypothetical external load in the Hamiltonian of the system and analyze the energetic input-output relation of the VS.
منابع مشابه
Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملMechanisms Responsible for ω-Pore Currents in Cav Calcium Channel Voltage-Sensing Domains
Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (...
متن کاملBoron nitride nanotubes selectively permeable to cations or anions.
Biological ion channels in membranes are selectively permeable to specific ionic species. They maintain the resting membrane potential, generate propagated action potentials, and control a wide variety of cell functions. Here it is demonstrated theoretically that boron nitride nanotubes have the ability to carry out some of the important functions of biological ion channels. Boron nitride nanot...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2012